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Microstresses in particulate-reinforced

brittle composites
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The magnitude and spatial distribution of internal microstresses, arising from thermal
expansion mismatches, in particulate-reinforced brittle composites were analyzed
theoretically using a concentric sphere model. The extent of the stress interaction between
inclusions was found to be strongly related to the inclusion size and content, and
correspondingly had a considerable effect on the strain energy stored by the matrix. Taking
the effect of stress interaction into account, the critical inclusion size for spontaneous
microcracking was evaluated, and was found to be a function of the inclusion content.
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1. Introduction
The development of composite materials has provided
promising properties that are attractive for advanced
applications. For those composites having one ductile
component, where the stored strain energy can be easily
relieved by plastic deformation, considerable internal
stresses can still arise on cooling from the fabrication
temperature, where the stresses can result at tempera-
ture below which the ductility can no longer occur to
relieve them. These are mostly due to the mismatch in
the coefficient of thermal expansion (CTE), in addition
to elastic modulus differences, between the components
of the ceramic matrix composite [1–3]. The occurrence
of internal rupture in brittle composite materials and its
influence on material properties have become important
subjects in both theoretical and experimental investiga-
tions over the last three decades [3–5]. Analysis of the
magnitude and distribution of internal stresses due to
the introduction of foreign inclusions is well-developed
[2, 6, 7], and has concluded that internal fracture ap-
pears most likely to originate from inclusions [8, 9].
However, Singh et al. [10] indicated that the magnitude
of the internal stress is a necessary but not solely suffi-
cient condition for microcracking, and they concluded
furthermore that the nature of the multiaxial stress dis-
tribution is of significance in the onset of microfrac-
ture. Davidge and Green [1] first considered the effect
of inclusion size on the formation of microcracks in
brittle composites and found that a minimum disper-
sion size is essentially required for internal rupture to
occur. However, most studies concerning the internal
stresses in brittle composites originate from the con-
sideration of a single particle (generally of a spherical
shape) embedded in an infinite isotropic matrix. This
theory holds only for composites with a sufficiently

low second-phase particle content. Any extension of
the theory in describing the characteristics of internal
stresses in brittle composites with higher inclusion con-
tents may lead to appreciable errors. Therefore a model,
which was first proposed by Aahmy et al. [11] and re-
sulted in excellent prediction of the thermal expansion
behavior of composites, based on one sphere fitted into
another spherical shell with an internal stress balance
at the inclusion-matrix interface was used in this study.
The internal stress interaction was considered and the
critical inclusion size for spontaneous microcracking
evaluated. The minimum inclusion content, i.e. critical
content, was also determined.

2. Concentric sphere model
The model proposed by Aahmy et al. for thermal ex-
pansion predictions in two-phase composites considers
a stress balance between a sphere of radius a and a
surrounding spherical shell of inner radius a and outer
radius b, as shown in Fig. 1. If both solids are in perfect
contact the balance stress (σa) at the interface is given
by

σa = −(αi − αm)T

2a3(1 − 2νm) + b3(1 + νm)

2Em(b3 − a3)
+ 1 − 2νi

Ei

(1)

where the inner sphere (representing the inclusion) has
elastic properties Ei and νi and a CTE αi and the outer
shell (the matrix phase) has the properties Em , νm and
αm respectively.
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Figure 1 Concentric sphere model.

Considering the stresses acting on the inner shell: us-
ing elasticity theory, it can be shown that the radial and
tangential components of the stress (σρ and σθ respec-
tively), at a distance r from the center of the sphere, can
be expressed in a polar coordinate system (see Fig. 1)
as given by Equations 2 and 3.

σρ = σa
a3(b3 − r3)

r3(a3 − b3)
(2)

σθ = −σa
a3(2r3 + b3)

2r3(a3 − b3)
(3)

The stress σα can be either tensile or compressive de-
pending on the relative expansivities of the two solids.

For most ceramic particulate composites, internal
stresses arise primarily as a result of the mismatch in
CTE (thermal stresses, σα) and in elastic properties
(elastic stresses, σE ) on cooling from the fabrication
temperatures [12–14]. In the following discussions it
is assumed, for simplicity, that the ceramic particulate
composites can be considered as an assembly of con-
centric spheres as envisaged by the Aahmy model.

3. Stress induced by expansion mismatch
Equation 1 can be considered as the internal stress at
the particle–matrix interface caused by a thermal ex-
pansion mismatch between the two components, with
the core sphere representing the included phase. The
internal stress σα can be either tensile or compressive
depending on the relative CTEs of the two solids. If
the core material has a higher CTE than the shell, σα is
tensile (defined as negative) and if the opposite is true
σα is compressive (defined as positive) relative to the
inner surface of the shell.

Substituting Equation 1 into Equations 2 and 3, and
using the notation σα in place of σa , gives radial and
tangential stresses:

(σα)ρ = −(αi − αm)T

2a3(1 − 2νm) + b3(1 + νm)

2Em(b3 − a3)
+ 1 − 2νi

Ei

× a3(b3 − r3)

r3(a3 − b3)
(4)

(σα)θ = (αi − αm)T

2a3(1 − 2νm) + b3(1 + νm)

2Em(b3 − a3)
+ 1 − 2νi

Ei

× a3(2r3 + b3)

2r3(a3 − b3)
(5)

Since the composite is assumed to be an assembly of
concentric spheres of various sizes, the cube of the ratio
of the core radius (a) to that of the outer shell (b) cor-
responds to the volume fraction of inclusions, denoted
as x (={a/b}3). Thus, after rearrangement, Equations 4
and 5 can be rewritten as functions of the size and con-
tent of the included phase;

(σα)ρ = −(αi − αm)T
2x(1 − 2νm) + (1 + νm)

2Em(1 − x)
+ 1 − 2νi

Ei

×

(
a

a + δr

)3

− x

x − 1
(6)

(σα)θ = (αi − αm)T
2x(1 − 2νm) + (1 + νm)

2Em(1 − x)
+ 1 − 2νi

Ei

×
a3

x(a + δr )3
+ 2

2

(
1 − 1

x

) (7)

where δr is a distance from particle–matrix interface,
i.e. r = a + δr . For a spherical inclusion embedded in
an infinite matrix, where x ≈ 0, Equations 6 and 7
would result in the same expressions as those derived
by Selsing [2]. Selsing’s derivation, which is the re-
lationship most frequently used in the literature, is an
extreme case of the above equations and provides only
limited information about the internal stresses. Use of
Selsing’s equation for investigation of the nature of in-
ternal stresses in composites with appreciable fractions
of second-phase inclusions is likely to lead to an appre-
ciable error.

The stresses at the particle—matrix interface, i.e.
δr = 0 given by Equations 6 and 7 depend strongly upon
the inclusion content. For a fixed fraction of inclusions,
both stresses at a distance δr increase with the size of
the inclusion. This is consistent with those stresses first
observed by Davidge and Green in a glass-thoria com-
posite system [1].

If the inclusion size is sufficiently small compared
with the dimensions of the surrounding phase, or if the
system is dilute with only a small fraction of inclusions,
then we can obtain simplified relationships by setting
b 
 a or (1 − (b3/a3)) ≈ −(b3/a3). Thus Equations 4
and 5 become
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(σα)ρ = σαx −
(

a

a + δr

)3

(8)

(σα)θ = −σα

2
2x +

(
a

a + δr

)3

(9)

where,

σα = −(αi − αm)T
2x(1 − 2νm) + (1 + νm)

2Em(1 − x)
+ 1 − 2νi

Ei

Equations 8 and 9 indicate that both stresses drop off
rapidly with the distance from the interface and are
valid only for small fractions of inclusions or a small
inclusion size. On a cautionary note, the spherical shell
model is limited by the assumption that no stress inter-
ference occurs at a distance δr = b − a [11].

Equations 6 and 7 contain a number of important
parameters, including the inclusion content (x), size
(a) and distance from the inclusion–matrix interface
(δr ). It is therefore possible to use simple mathematical
treatments to provide an explicit understanding of the
ways in which these parameters affect the magnitude
and spatial distribution of the thermal stresses.

3.1. Inclusion content effect
Equations 6 and 7 provide a more realistic description
of thermal stress behavior than Equations 8 and 9. For
the purpose of this analysis a dimensionless parameter,
termed the “stress ratio”, is defined as the stress state at a
distance (δr ) from the inclusion–matrix interface to that
at the interface where the maximum stress is developed.
A higher value of the stress ratio corresponds to larger
internal stresses. Thus, in the radial direction, the stress
ratio is

[(σα)ρ]a+δr

[(σα)ρ]a
=

(
a

a + δr

)3

− x

1 − x
(10)

and in the tangential direction it is given by

[(σα)θ ]a+δr

[(σα)θ ]a
=

2 + 1

x

(
a

a + δr

)3

2 + 1

x

(11)

By setting a + δr = na (where n is an arbitary num-
ber ≥1), the variation in stress ratio with distance na
from the center of the inclusion can be obtained. Figs 2
and 3 show the radial and the tangential components of
the stress ratio, respectively, for several inclusion con-
tents. Both stress ratios display spatial distributions,
which decrease rapidly, reaching a plateau within ap-
proximately one inclusion radius of the interface (the
interface is located at n = 1). The negative value of the
radial stress component, which appears at higher in-
clusion contents, suggests a change in the stress state
from tension near the interface to compression further

Figure 2 Distribution of radial stress along a line from the interface into
the matrix.

Figure 3 Distribution of tangential stress along a line from the interface
into the matrix.

into the matrix, or vice versa depending on the relative
magnitudes of αi and αm . However, this variation in
stress state is absent in the tangential component. More
interestingly, at any fixed distance from the interface,
the stress components demonstrate the opposite depen-
dence upon inclusion content; an increased inclusion
content decreased the radial stress ratio but increased
the ratio in the tangential direction. The actual reason
is not clear at present, but this finding strongly suggests
the existence of stress interactions between inclusions.
This stress interaction between neighboring inclusions
should provide crucial role in dominating final stress
distribution within the composites and will be discussed
in detail below.

Consider two contacting model spheres containing
inclusions, designated A and B, as shown in Fig. 4:
each of which has the same structure as that depicted
in Fig. 1. At any distance δr from the interface, the
magnitude and spatial distribution of the stress can be
approximated by a linear combination of the stresses
due to the two nearest spheres because they interfere
most strongly. Hence, the combined radial stress is ob-
tained by using the stress ratio defined in Equation 10:
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Figure 4 Two adjacent concentric spheres with the same structure as
that in Fig. 1.

[(σα)ρ]a+δr

[(σα)ρ]a
=

(
a

r

)3

−
(

a

2b − r

)3

1 − x
(12a)

and in the tangential direction, the combined stress ratio
is given by

[(σα)θ ]a+δr

[(σα)θ ]a
=

1

x

(
a

r

)3

+
(

a

2b − r

)3

+ 4

2 +
(

1

x

)

(13a)

The factor of a/(2b − r ) in Equations 12a and 13a is the
stress contributed by the nearest inclusion, which was
assumed to be the one that interacted most strongly. The
term 2b is defined as the interparticle (center-to-center)
separation and can be expressed as

λ = D

x1/3
(14)

where λ = 2b and the inclusion size D = 2a. For sim-
plicity, the distance r is expressed as a multiple (n) of the
inclusion radius, i.e. na, where n is an arbitrary number
≥1. Substituting r and Equation 14 into Equations 12a
and 13a yields,

[(σα)ρ]a+δr

[(σα)ρ]a
=

(n)−3 −
(

2

x1/3
− n

)−3

1 − x
(12b)

[(σα)θ ]a+δr

[(σα)θ ]a
=

1

x
n−3 +

(
2

x1/3 − n

)−3

+ 4

2 + 1

x

(13b)

Both combined stress ratios are independent of inclu-
sion size but depend strongly on the inclusion content.
Figs 5 and 6 illustrate the radial and tangential com-
ponents of the combined stress for various inclusion
contents, plotted as a function of the relative position
along a line joining the two inclusion centers. Both com-
bined stresses are symmetric about the point midway
(denoted as 0) between the two inclusions.

Figure 5 Spatial Distribution of radial stress between two adjacent
inclusions.

Figure 6 Spatial Distribution of tangential stress between two adjacent
inclusions.

Considering first the radial component (Fig. 5); with
an increased inclusion content (x) the interfacial dis-
tance between inclusions (2b–2a) is decreased, and is
accompanied by an increased interfacial stress ratio. All
the curves of stress ratio decrease sharply to a minimum
value at the midpoint, at which position the magnitude
of the stress ratio increases with inclusion content (the
values are too small to be clearly identified in Fig. 5, but
are always non–zero). The radial stress distribution be-
tween inclusions becomes sharper for higher contents
than for lower ones. These observations indicate that the
radial stresses do interact with each other but that the
effect is actually rather small because the “effective dis-
tance” for such radial stresses is rather short, being only
about 1 to 2 times the inclusion radius. On the contrary,
the magnitude and distribution of the combined tan-
gential stresses, depicted in Fig. 6, are rather different
from those in the radial direction. There is an obvious
interaction effect between inclusions, even at the cen-
tral position where the magnitude of the stress ratio in-
creases with an increased inclusion content. Comparing
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Figure 7 Radial and tangential components of the interfacial stress ratio
at various inclusion contents.

the stress ratios at the inclusion–matrix interface (i.e.
at n = 1) for various inclusion contents, as shown in
Fig. 7, it can be seen that the interfacial stress in both
directions is approximately linearly proportional to the
inclusion content.

However there is a higher volume fraction depen-
dence in the tangential direction than in the radial di-
rection. This gives rise to the presence of stronger
interfacial tangential stresses than interfacial radial
stresses when the inclusion content exceeds approxi-
mately 0.35. This finding may prove important for en-
hancing the fracture toughness of composite materials
[16, 17] and will be discussed separately.

An evaluation of the magnitude and spatial distribu-
tion of internal residual stresses in real materials can
now be made by re-writing Equations 6 and 7 in com-
bination with Equations 12a and 13a, which gives,

(σα)ρ = −(αi − αm)T
2x(1 − 2νm) + (1 + νm)

2Em(1 − x)
+ 1 − 2νi

Ei

×

(
a

r

)3

−
(

a

2b − r

)3

1 − x
(15)

(σα)θ = (αi − αm)T
2x(1 − 2νm) + (1 + νm)

2Em(1 − x)
+ 1 − 2νi

Ei

×
4 + 1

x

(
a

r

)3

+
(

a

2b − r

)3

2

(
1 − 1

x

) (16)

3.2. Inclusion size effect
By employing a mathematical treatment similar to that
appearing in Section 3.1, the effect of inclusion size on
the stress state can be estimated. Taking the original
radius a as an unit of distance, setting the size of in-
clusion to be R = ma (where m is an arbitrary positive
number) and then considering a distance δr from the

inclusion—matrix interface allows Equation 10 to be
rewritten as

[(σα)ρ]R+δr

[(σα)ρ]a+a
=

(
R

R + δr

)3

− x

(
1

2

)3

− x

(17)

and Equation 11 as

[(σα)θ ]R+δr

[(σα)θ ]a+a
=

2 + 1

x

(
R

R + δr

)3

2 +
(

1

2

)3 1

x

(18)

Both stress ratios, Equations 17 and 18, show a simi-
lar dependence upon inclusion size but have an oppos-
ing dependence upon inclusion content as illustrated in
Figs 8 and 9. A considerable increase in radial stress
ratio for x ≥ 0.1 was observed, and is suggested to be a
result of a significant decrease in interparticle spacing.
Confirmation of this will follow in a later discussion.

Figure 8 Effect of inclusion size on the radial stress at a fixed distance
from the interface, for various inclusion contents.

Figure 9 Effect of inclusion size on the tangential stress at a fixed dis-
tance from the interface, for various inclusion contents.
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Now consider two adjacent model spheres, each of
radius R, and set δr = ma, a distance of m times the unit
radius (a). At a distance δr from one of the inclusion-
matrix interfaces the radial stress ratio is assumed to
be a summation of the stress ratios of the two nearest
inclusions and is given by

[(σα)ρ]R+δr

[(σα)ρ]R
=

(
R

R + δr

)3

−
(

R

2Rx−1/3 − R − δr

)3

1 − x
(19)

whilst the combined tangential stress ratio is given by

[(σα)θ ]R+δr

[(σα)θ ]R

=
4 + 1

x

(
R

R + δr

)3

+
(

R

2Rx−1/3 − R − δr

)3

2 + 1

x
(20)

As an illustration, Figs 10 and 11 respectively show the
results for radial and tangential stress ratios at x = 0.05.
It is interesting to note that the interfacial stress ratio

Figure 10 Effect of inclusion size on the spatial distribution of radial
stress between two adjacent inclusions at x = 0.05.

Figure 11 Effect of inclusion size on the spatial distribution of tangential
stress between two adjacent inclusions at x = 0.05.

is independent of the inclusion size at fixed inclusion
content; that is, the interfacial residual stress due to
expansion mismatch is independent of the size of the
inclusion. The stress ratio (or stress) distribution for
various inclusion sizes and contents is quite different;
however, the distribution curve is similar in shape, i.e.,
U shape, and is essentially symmetrical between iden-
tical particles. The distribution becomes narrower at
lower inclusion contents and smaller inclusion sizes,
and conversely it is broader at higher inclusion con-
tents and larger inclusion sizes.

Although Figs 10 and 11 are derived from neighbor-
ing spherical inclusions of identical size, it seems can-
ceivable that a certain deformation or shift in the stress
ratio—ma profile (U shape) can occur if the neighbor-
ing inclusions are different in size. This also implies
that the same model can be expanded to account for the
effect of particle size distribution; however, is beyond
the scope of this work. The shape of the inclusion is
also known to affect the stress distribution to a signif-
icant extent. However, a successful application of the
“idealized” model, as will be discussed later, to a realis-
tic ceramic matrix composites, i.e., Al2O3–Cr3C2 sys-
tem, where the inclusions are virtually non-spherical
and randomly distributed in particle size, suggests a
high feasibility of the “ideal” model to the “real” com-
posite systems.

4. Average internal stresses
In Sections 3.1 and 3.2, the magnitude and distribution
of internal residual stresses were obtained in terms of
the inclusion content and size, e.g. Figs 5, 6 and Figs 10,
11 respectively. The internal stresses can therefore be
estimated by integrating the area under each stress dis-
tribution curve. In the radial direction, the integration
of Equation 14 gives

∫ b−a

a
Equation 14 dr = σα a

1 − (
2x−1/3 − 1

)−2

1 − x
(21)

and an average radial stress can be expressed by,

σρ = σα

1 − (2x−1/3 − 1)−2

(1 − x)(x−1/3 − 1)
(22)

In the tangential direction, the integration of Equa-
tion 15 leaves
∫ b−a

a
Equation 15 dr = σα a

[
1 + (2x−1/3 − 1)−2

4(1 − x)

]

(23)

giving an average tangential stress of

σθ = σα

1 + (2x−1/3 − 1)−2

4(1 − x)(x−1/3 − 1)
(24)

where σα has been defined previously. Equations 22
and 24 indicate that the average internal stresses are in-
dependent of the inclusion size but show a dependence
upon the inclusion content. Plotting the average stress
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Figure 12 Average internal stress ratio in radial and tangential directions
at various inclusion contents.

ratios (defined as σ/σα in Equations 22 and 24) with
respect to the fraction of inclusions results in a rela-
tionship as shown in Fig. 12. This relationship displays
a cross–over in the magnitude of the average stresses
at an inclusion content of approximate 0.4; below this
point the average stress is larger in the radial direc-
tion and above this point the average tangential stress
is larger. This difference in stress magnitude with in-
clusion content is important in determining the frac-
ture plane during crack propagation and in suppressing
crack extension [5, 16, 18]. Furthermore, the area under
each curve is regarded as the stored strain energy. There-
fore from Equations 21 and 23, the stored strain energy

Dc >
6γA

[(
F2

ρ + 2F2
θ

) − 2νm Fθ (2Fρ + Fθ )
]2σ 2

α

Em
+ σ 2

α (1 − 2νi )2

Ei

(28)

in each principal direction is proportional to the size
of the inclusion. Moreover, the stored strain energy for
each principal direction increases with inclusion con-
tent and has the same dependence as those observed in
Fig. 12.

This stored strain energy–inclusion size relationship
explains the phenomenon of spontaneous microcrack-
ing which is observed around inclusions of sufficient
size. Cracking occurs when the particle size reaches a
critical value where the total stored strain energy (i.e. a
summation of each stored strain energy component in
a three dimensional consideration) exceeds the fracture
energy of the composites.

5. Critical inclusion size
In determining the critical inclusion size for sponta-
neous microcracking due to differential thermal con-
traction an energy viewpoint is considered to be the
most appropriate [1, 5]. Therefore, the stored strain

energy in the matrix (Um) subject to orthogonal stresses,
σρ , σθ and σφ can be obtained from elasticity theory,
giving the total strain energy stored in the matrix [19].

Um = 1

2Em
(1 + νm)

(
σ 2

ρ + σ 2
θ + σ 2

φ

)

− νm(σρ + σθ + σφ)2 (25)

Let σθ ≈ σφ and assume this does not introduce a sig-
nificant error in the estimate of Um . Substituting for σρ

and σθ , using Equations 15 and 16 respectively, results
however in an integral function which is too tedious
to be solved analytically (not shown). Instead, for sim-
plicity and for ease of use, an equation to estimate the
critical inclusion size from the average internal stresses,
i.e. Equations 22 and 24, was developed. By combin-
ing the stored strain energy (Um) in the matrix, together
with the stored strain energy in the inclusion (Ui ),

Ui = σ 2
i

2Ei
(1 − 2νi )

2 (26)

The critical inclusion size Dc (=2ac, where ac is defined
as the critical radius) for spontaneous microfracture in
a semi-spherical geometry can be estimated when the
criterionUm + Ui > fracture energy of composite is met
[1]. This gives the relation of,

4

3
πa3

c (Um + Ui ) > 2πa2
c γA (27)

After rearrangement, the critical inclusion size Dc can
be calculated by,

where

Fρ = 1 − (2x−1/3 − 1)−2

(1 − x)(x−1/3 − 1)

Fθ = 1 + (2x−1/3 − 1)−2

4(1 − x)(x−1/3 − 1)

and γA is the effective fracture energy of the matrix
phase, usually taken as ≈1 J/m2. It is important to note
that the critical inclusion size (Dc) is strongly related to
the inclusion content, which is a frequently-measured
experimental parameter [20, 21]. Furthermore, it is pos-
sible to estimate a critical volume fraction of second-
phase inclusions by using Equation 27 for the onset of
microcracking at a given inclusion size.

However, determining the interparticle separation ac-
cording to Equation 14 may give rise to certain errors
since the description of composites as an assembly
of concentric spheres of one size only is generally

3493



Figure 13 Comparisons of interparticle separation as predicted by Equa-
tions 14 and 29.

unrealistic; a more accurate picture would consider an
assembly of varying size spheres. Leory et al. [22] es-
tablished experimentally that Equation 14 must be mod-
ified statistically to give;

λ = 1.085D

x1/2
(29)

In fact, both Equations 14 and 29 display similar predic-
tions for � at small inclusion sizes and high inclusion
contents, as depicted in Fig. 13. A substantial devia-
tion occurs for a small concentration of large sized in-
clusions. The magnitude and spatial distribution of the
aforementioned internal stresses, particularly as given
by Equations 15 and 16, should be correlated with
Equation 29 for real composites. The factors F� and
F�, in Equation 27, for prediction of the critical inclu-
sion size, should therefore also be approximated by,

Fρ = 1 − (2x−1/3 − 1)−2

(1 − x)(1.085x−1/2 − 1)

Fθ = 1 + (2x−1/3 − 1)−2

4(1 − x)(1.085x−1/2 − 1)

Using Equation 28 with factors F ′
� and F ′

�, Fig. 14
shows experimental observations for Al2O3-Cr3C2
composites, which have been extensively investigated
[21, 23]. The figure demonstrates a spontaneous
microcracking–inclusion content in good agreement
with the predictions of Equation 28. The inset of
Fig. 14 also illustrates the predicted results for several
ceramic-based particulate composites, such as Al2O3-
SiC, Al2O3-TiC, Al2O3-Cr3C2 and Si3N4-SiC, which
were examined to determine the critical inclusion size
for various inclusion contents. The values in parenthe-
ses represent the difference in CTE (�α) between the
inclusion and the matrix phases. The critical inclusion
size in brittle composites decreased as the inclusion
content increased, with the degree of dependence being
strongly related to the differences in elastic constants
and CTEs of the components. In fact, it is reasonable to
recognize the effect of inclusion content on the critical
inclusion size from an energy viewpoint, as substan-

Figure 14 A direct comparison between experimental observation and
prediction of the critical inclusion size (Equation 28) in terms of the
inclusion content for Al2O3-Cr3C2 composites, where the sign “X” rep-
resents microcracking and “O” shows no sign of microcracking. Inset:
prediction of Dc for several ceramic-based particulate composites. (Val-
ues in parentheses denote the difference in α).

tiated by Equations 21 and 23 together with Figs 10
and 11.

It is interesting to note that, as previously stated, the
prediction for the Al2O3-Cr3C2 composites is relatively
successful, irrespective of the size distribution, shape,
and possible clustering efffect of the inclusion phase
(Cr3C2) during sintering. The clustering effect is par-
ticularly pronounced when the inclusion concentration
is high, for instance, greater than 30 vol%, where some
particulate inclusions were found to cluster into large
inclusion of complex shape [21]. Since the model pro-
posed is based simply on two concentric spheres of
identical size, it is surprised that it provides a reason-
ably accurate prediction for real composite systems of
various inclusion concentration up to 40 vol%, where
the size, size distribution, and shape of inclusion phase
is far more complicate than that used in the model.
This strongly suggests some comprising effect may be
present in between which leads to a wide feasibility of
the theoretical model proposed here to relistic brittle
composite systems.

6. Conclusions
This study provides an alternative way to assess the
magnitude and spatial distribution of internal mi-
crostresses, arising from CTE mismatches in brittle
composites with various contents of second-phase in-
clusions. Stress interactions between inclusions are an
important factor in determining the nature of the stress
state and can not be neglected as they are in conven-
tional analyses based on a single particle embedded
within an infinite isotropic matrix. The critical inclusion
size is strongly influenced by the mismatch in expan-
sivity of the components, the temperature from which
the composite is cooled and in particular the inclusion
content.
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An understanding of the magnitude and distribution
of internal stresses between inclusions is of benefit in
the prediction of fracture behavior and failure in brit-
tle composites. By considering the nature of internal
residual stresses it is expected that improved compos-
ites, with good strength and high fracture toughness,
can be fabricated.
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